More great
@Dr Simon Mitchell snippets (sifting through the Deep Stops Increases DCS thread again):
...
I am saying (based largely on the results of the NEDU study) that transient high / peak supersaturation in fast tissues does not seem to matter as much as we thought it might, and therefore that protecting fast tissues from supersaturation early in the ascent by using deep stops does not seem as effective as assumed by bubble models. This is especially so when it comes at the cost of increased supersaturation (both in terms of peak levels and duration) in slower tissues later in the ascent. The NEDU study is telling us that this is where the problems seem to come from.
@Kevrumbo asks:
. . .
Explain from a physiological basis why allowing supersaturation of Fast Tissues in this instance is less risky to those tissues and results in a lower overall incidence of DCS in the shallow stops trials of the NEDU Study. . . ?
Hello Kev,
The bubble models and the deep stop approach were originally promoted on the basis that they were more successful at controlling bubble formation. The attempts to evaluate this notion in decompression dives in humans that I am aware of have shown that gas content models (or decompression procedures that have backed off deep stops to some extent) actually produce less bubbles when measured after surfacing. Neal Pollock presented some fascinating work they have been doing at the inner space event at a NOAA / AAUS rebreather diving forum I attended last week. Hopefully this will find its way into the literature at some point soon. In any event, the more we investigate it, the more the "control bubbles by deep stopping" concept appears to need reconsideration. What this is suggesting is that the bubbles are coming from the slower tissues that absorb more inert gas during the deep stops. It also implies that the faster tissues that deep stops attempt to protect from supersaturation are less prone to bubble formation when they become supersaturated.
You are seeking a physiological explanation for this, and while I can't be definitive, I would suggest that it makes sense that a tissue washing inert gas out quickly might be less prone to bubble formation and growth than a tissue with slower inert gas kinetics where the supersaturation persists for longer (there's that time integral again).
Simon M
Deep Stops Increases DCS