Oh, I get that. But I can't say we really care. We don't need to keep the boat in one place. Though I could easily do that as I'm cutting the 55 gallon drum in half with a grinder and can make a bottom for it. I can experiment with the amount of chain to use. I'd definitely want a buoy to keep off the bottom.The two anchors work in opposite directions, one for the flood, one for the ebb.
The riser comes up in the middle of the two anchors and, when your boat's moored to the buoy, it'll pull against the ebb or flood anchor depending on the direction.
Anchor's tend to work in a single direction you see
There's some rock and then if you keep going into deeper (not much deeper) water, there is more and more silt on top of the rocks and sand. Another neighbor put in an entire barrel, and that has sunk into the bottom a fair bit. It hasn't rolled. Mind you, nothing is attached during the worst storms of winter.Hard bottom (rock or coral) use a core drill to set the anchor point. Drill into the bottom with the core drill until the bit get far enough in you can just see the top, then leave the bit in place and bond it into position using polyester or epoxy fiberglass resin. The resin is denser than seawater, resistant to mixing, and can be poured in with just a hose and funnel from the surface mixing support.
For small boats on hard bottom boats a 316 stainless steel eyebolt of an inch or so in diameter and long enough to engage enough rock epoxied into a hole drilled in the rock will last a long time if the mooring line has suitable chafe protection installed.
I will be removing the chains in winter and inspecting them. Stuff does grow on them, even oysters.On soft or sand bottoms there are several easy solutions if you have access to a marine or industrial scrap/boneyard. Ships are required to replace their anchor chains when corrosion reaches a defined level, generally about a 10% reduction in cross section. It is illegal to "de-rate a used chain for use on a smaller vessel, so that can be available for free or scrap steel pricing. Even smallish ships use chain large enough to be effective anchors for boats under 100' long if enough of it is spread out on the seafloor. Chain is easy to load onto a small boat and deploy by allowing it to run free off a plywood guide (I've done this off a 12' Boston Whaler) onto a sand bottom. A buoyant section of line or submerged buoy needs to lift a few feet of chain off the bottom to reduce damage by scour, with the rest of the line being either near neutral (spectra) or slightly negative (nylon). When working off Andros we did all chain and line moors with no buoy such that the top of the moor was submerged by 15 to 20 feet, with a submerged negatively buoyant painter 30 or more feet long to hook to the visiting vessel. Hookup was done by sending a snorkeler down to retrieve the line.
Yes, there are railroad wheels that have gotten buried. I have no idea how they got there, but yeah EXTREMELY heavy.Inland or near industrial areas old worn out railroad wheel sets are handy and relatively inexpensive. Price is generally that of scrap steel, with each wheel set yielding 2 anchors. The wheels are roughly 500# each and work well with a heavy duty 316 stainless hoop or shackle welded to half the axle for mooring attachment. They self embed in sand or mud through natural scour and are highly resistant to dragging if the attachment point is on the axle end. Other things that work well are engine blocks with chain passed through the cylinders (pick your engine size to get the weight you want,) and scrap iron filled concrete blocks. Pure concrete is too light underwater to resist much water movement or ship dragging.
Good to know. I'm 52 and hope that this anchor will outlive me or the time I'm still living in the United States as I plan to move back to Europe.Another option is a propane cylinder full of lead cast around a suitable size of chain. That is real dense and embeds due to scour quickly.
The life of any mooring is related to the relative movement of parts and the corrosion rates. Both steel and 316 stainless steel dissolve at the rate of about 0.008" per year in still well oxygenated salt water. The primary difference is the stainless allows the corrosion loss to be readily seen and measured. There is also the erosion corrosion effect on stainless where the protective film of corrosion is removed by relative movement of the components. You'll either need to use heavy enough sections to handle that or design it to minimize relative movement between adjacent hard parts.