tonka97
Contributor
- Messages
- 795
- Reaction score
- 10
- # of dives
- I'm a Fish!
Thank you Wiki!
Source: Wikipedia Cavitation - Wikipedia, the free encyclopedia
Marine life:
Just as cavitation bubbles form on a fast-spinning boat propeller, they may also form on the tails and fins of aquatic animals. The effects of cavitation are especially important near the surface of the ocean, where the ambient water pressure is relatively low and cavitation is more likely to occur.
For powerful swimming animals like dolphins and tuna, cavitation may be detrimental, because it limits their maximum swimming speed.[19] Even if they have the power to swim faster, dolphins may have to restrict their speed because collapsing cavitation bubbles on their tail are too painful. Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the painful bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create an air film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.
Cavitation is not always a limitation for sea life; some animals have found ways to use it to their advantage when hunting prey. The pistol shrimp snaps a specialized claw to create cavitation, which can kill small fish. The mantis shrimp (of the smasher variety) uses cavitation as well in order to stun, smash open, or kill the shellfish that it feasts upon. Their knees do wear out as a result, which is not a problem because the animal moults every three months.[20]
Another informative site: "Cavitation: bubble formation in plants, reptiles and shrimps" : Map of Life
Source: Wikipedia Cavitation - Wikipedia, the free encyclopedia
Marine life:
Just as cavitation bubbles form on a fast-spinning boat propeller, they may also form on the tails and fins of aquatic animals. The effects of cavitation are especially important near the surface of the ocean, where the ambient water pressure is relatively low and cavitation is more likely to occur.
For powerful swimming animals like dolphins and tuna, cavitation may be detrimental, because it limits their maximum swimming speed.[19] Even if they have the power to swim faster, dolphins may have to restrict their speed because collapsing cavitation bubbles on their tail are too painful. Cavitation also slows tuna, but for a different reason. Unlike dolphins, these fish do not feel the painful bubbles, because they have bony fins without nerve endings. Nevertheless, they cannot swim faster because the cavitation bubbles create an air film around their fins that limits their speed. Lesions have been found on tuna that are consistent with cavitation damage.
Cavitation is not always a limitation for sea life; some animals have found ways to use it to their advantage when hunting prey. The pistol shrimp snaps a specialized claw to create cavitation, which can kill small fish. The mantis shrimp (of the smasher variety) uses cavitation as well in order to stun, smash open, or kill the shellfish that it feasts upon. Their knees do wear out as a result, which is not a problem because the animal moults every three months.[20]
Another informative site: "Cavitation: bubble formation in plants, reptiles and shrimps" : Map of Life