This great article gives you a quick and dirty understanding of the rule of fifths as a way to avoid Isobaric Counterdiffusion when diving Helium.
Isobaric Counter Diffusion - Scuba Engineer
Basically, "limit your rise in N2 to one fifth of the drop in Helium as you ascend."
So in the article, going from 20/25 to EAN32 was a no-no with a long deco run, because when He dropped from 25% to zero, the safe max jump in N2 was 5% rather than 55% to 68% (13%).
But when does it become unnecessary? I gather that for short deco, going from (for example) 15/55 to EAN50 is both common and generally accepted as safe. Theoretically, it exceeds the rule: He - 50% to 0%, while N2 - 30% to 50%. But your intermediate stops are very short, and no deco gases are hypoxic.
But using the first example discussed in the article, going from 20/25 would then progress to 32/8, and was noted to be safe. But this violates the rule too! The smaller the drop in Helium, the smaller the allowed rise in N2. Here, one fifth of a 17% drop in He is 3.7%, while the rise in N2 was 5%.
So when does it become silly that a small drop in Helium "allows" an even smaller rise in N2?
How does one properly use the rule to determine intermediate deco mixes?
Isobaric Counter Diffusion - Scuba Engineer
Basically, "limit your rise in N2 to one fifth of the drop in Helium as you ascend."
So in the article, going from 20/25 to EAN32 was a no-no with a long deco run, because when He dropped from 25% to zero, the safe max jump in N2 was 5% rather than 55% to 68% (13%).
But when does it become unnecessary? I gather that for short deco, going from (for example) 15/55 to EAN50 is both common and generally accepted as safe. Theoretically, it exceeds the rule: He - 50% to 0%, while N2 - 30% to 50%. But your intermediate stops are very short, and no deco gases are hypoxic.
But using the first example discussed in the article, going from 20/25 would then progress to 32/8, and was noted to be safe. But this violates the rule too! The smaller the drop in Helium, the smaller the allowed rise in N2. Here, one fifth of a 17% drop in He is 3.7%, while the rise in N2 was 5%.
So when does it become silly that a small drop in Helium "allows" an even smaller rise in N2?
How does one properly use the rule to determine intermediate deco mixes?