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Warkander DE, Nagasawa GK, Lundgren CEG. Effects of inspiratory and expiratory resistance in divers’ breathing
apparatus. Undersea Hyper Med 2001; 28(2):63—73.—This study was performed to determine if inspiratory breathing
resistance causes greater or smaller changes than expiratory resistance. Unacceptable inspiratory resistances were also
determined. Five subjects exercised at 60% of their VO,,,, while immersed in a hyperbaric chamber. The chamber was
pressurized to either 147 kPa (1.45 atm abs, 4.5 msw, 15 fsw) or 690 kPa (6.8 atm abs, 57 msw, 190 fsw). Breathing
resistance was imposed on the inspiratory or expiratory side and was as high as 0.8-1.2 kPa - liter ' - s ' (8-12 cm H,O -
liter ' - s') at a flow of 2-3 liter - s ' at 1 atm abs., the other side being unloaded. The subjects reacted to the imposed load
by prolonging the phase of breathing that was loaded. Inspiratory breathing resistance caused greater changes than
expiratory resistance in end-tidal CO,, dyspnea scores, maximum voluntary ventilation, and respiratory duty cycle. Using
previously published criteria for acceptable levels of dyspnea scores and the CO, levels, we found that an inspiratory
resistance inducing a volume-averaged pressure of 1.5 kPa is not acceptable. Similarly, an expiratory resistance should not

induce a volume-averaged pressure exceeding 2.0 kPa.

exercise, performance, diving

Breathing resistance is present in every kind of
breathing apparatus. There is generally no particular
reason why a breathing apparatus should impose the
same amount of resistance during inspiration as during
expiration. However, the designer of such a breathing
apparatus has often some latitude to decide whether
components would induce resistance during inspiration
or expiration. This is, for instance, the case with CO,
absorbers used in a rebreathing (closed circuit) apparatus.
However, information is lacking on divers’ tolerance to
the relative distribution of inspiratory and expiratory
resistance. Other loads, such as elastance and static lung
loading, are often present in a breathing apparatus. This
study concentrated on the effects of strictly resistive
loads. These resistive loads were in addition to the
airway resistance. The airway resistance varies during a
breath. Typically, the expiratory resistance is somewhat
larger than the inspiratory resistance. This is due to flow
phenomena within the airways and also because the vocal
cords can move during breathing (1).

In a study (2) with five subjects performing moderate
exercise on a treadmill in a conventional laboratory
setting, the subjects reported that the “perceived discom-
fort” and the “perceived limitation of exercise duration”
were the same whether a resistance was imposed during
inspiration or during expiration. Later, the same investi-
gators (3) used about the same levels of exercise and
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breathing resistance in 11 subjects and found that
inspiratory resistance had more pronounced effects, as
judged by the scorings, than expiratory resistance.
During resting conditions, other investigators (4) found
that inspiratory and expiratory resistances of the same
magnitude induced the same amount of dyspnea.

Apart from these studies, remarkably little attention has
been paid to how the distribution between inspiratory and
expiratory resistance will affect the tolerance to and the
effects of the breathing resistance.

The present study was designed to investigate the
effects of a given breathing resistance that was placed on
either the inspiratory or the expiratory side, the other side
being unloaded while the total respiratory work was
constant. The breathing resistance was imposed during
realistic and demanding conditions. The subjects were
immersed and leg exercise was performed at a relatively
heavy workload. The experiments were done at the great-
est depth (190 fsw, 57 msw, 690 kPa, 6.8 atm abs) that
the standard U.S. Navy air decompression tables allow,
and control experiments were performed at a shallow
depth (15 fsw, 4.5 msw, 147 kPa, 1.45 atm abs). The
imposed resistance levels were quite large. In fact, a
previous study (5) showed that when they were acting
during both inspiration and expiration (i.e., symmetrical
resistance) they were unacceptably high. Thus, the
present study was also designed to determine acceptable

63



Scanned for the Undersea and Hyperbaric Medical Society by The Rubicon Foundation

in cooperation with Global Underwater Explorers. (http://rubicon-foundation.org)

64 D. E. WARKANDER, G. K. NAGASSAWA, AND C. E. G. LUNDGREN

levels of asymmetrical resistance.

The information gathered would be useful in several
ways. It would help designers of breathing gear to decide
where in a breathing circuit to place components causing
unavoidable breathing resistance, such as a CO, absorber,
and provide testing standards for breathing gear and help
explain physiologic mechanisms.

METHODS

The five subjects were non-smoking males who all
were certified scuba divers. Their ages ranged between
18 and 25 yr, their body masses between 63 and 90 kg,
heights between 171 and 183 cm. The protocol had been
approved by the Institutional Review Board for Human
Experimentation of the University of Buffalo. The sub-
jects had given their informed consent to participate.
Abbreviations are explained in Table 1.

Experimental procedure: The experimental set-up has
been described before (6). Therefore, only a brief de-
scription follows. The experimental dives were per-
formed in the wet part of a hyperbaric chamber. They
were performed at two depths; the shallow depth was 4.5
msw (15 fsw, 147 kPa, 1.45 atm abs) and the greater was
as deep as the U.S. Navy standard decompression tables
allow, i.e., 57 msw (190 fsw, 690 kPa, 6.8 atm abs).
Exercise was performed in the prone position on an
underwater ergometer. The workload was set to corre-
spond to 60% of each subject’s non-immersed maximum
oxygen uptake as determined on a cycle ergometer (7).

Table 1: List of Abbreviations

BTPS body temperature and pressure, saturated with

etCO, water vapor end-tidal CO,

f breathing frequency

ERV expiratory reserve volume

FEV,,% forced expiratory volume in 1 s, expressed as a
fraction of the forced vital capacity

HR heart rate

MVV maximum voluntary ventilation

PetCO, end-tidal CO,

Pm,, peak inspiratory pressure

Pm,, peak expiratory pressure

R respiratory exchange ratio

STPD standard temperature (0°C) and pressure (101.3
kPa), dry gas

SLL static lung load

T, time during inspiration

g time during expiration

et respiratory duty cycle

vC vital capacity

\."E minute ventilation

Vo, oxygen consumption

V., tidal volume

WOB/V volume averaged pressure, the same as work of

breathing per volume

Static breathing gas pressure (also known as static lung
load) was equal to the water pressure at a plane 7 cm
dorsal to the sternal notch. Hence, no static load was
imposed (8). The subjects breathed air.

Breathing resistance was imposed by a disc with an
orifice in it. This type of orifice gives a pressure drop
related to the square of the flow. The disc was either
placed on the inspiratory or the expiratory side of the
breathing circuit. The control situation exposed the
subject to the lowest possible resistance (by using hoses
with an inner diameter of 51 mm). This resistance was
0.2 kPa -liter ' -s™' (2 cm H,O - liter ' -s™') at a flow of
3 liter - s”' when measured at sea level. In addition, two
levels of resistance (cf 5) were used. A high resistance
was selected for each subject in training runs and was
such that the subject could endure it for 25 but not for 30
min when it was imposed on both the inspiratory and
expiratory side. Typically, this resistance (when applied
to either the inspiratory or expiratory side) was 0.8-1.2
kPa - liter ' -s™' (8-12 cm H,0 -liter ' s™") at a flow of
2-3 liter ~s™' when measured at sea level. A moderate
resistance was also used and was 85% of the high
resistance. The size of the orifice was increased to
compensate for the increased gas density and generate
the required resistance at the greater depth.

After the chamber was pressurized, the subject entered
the water and rested for 5 min. Determinations of VC,
FEV,,, and MVV followed. The subject then started to
exercise for an intended duration of 25 min. The subject
was free to terminate the experiment at any time. An
experiment would be terminated by the experimenter had
the end-tidal CO, exceeded 8.7 kPa (65 mmHg) or if a
subject did not respond adequately to instructions.

Data recording and analysis: The subject breathed to
and from a bag-in-box system which allowed spirometry
and collection of expired gases. Analysis of end-tidal O,
and CO, was done by a mass spectrometer (Perkin-Elmer
MGA 1100, Perkin-Elmer Inc., Pomona, CA) which
sampled the gas in front of the subject’s mouth. The
durations of inspiration (T,) and expiration (T,) were
determined from the spirometer trace. The respiratory
duty cycle was calculated as T/T,,,, where T, =T, + T..
The ERV was determined from the spirometer signal by
requesting the subject to exhale to residual volume.

The level of dyspnea was scored by the subject using
a four-tiered scale; a 0 indicated a lack of shortness of
breath, a | indicated a feeling of dyspnea but not strong
enough to make the subject doubt his ability to continue
another 5 min, a 2 indicated dyspnea pronounced enough
to make the subject doubt his ability to continue another
5 min, and a 3 meant severe dyspnea necessitating
immediate termination of the experiment.
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Pressure swings in the mask were measured by a
pressure transducer (Validyne DPI15, Validyne Inc.,
Northridge, CA). The respiratory work performed when
breathing against the imposed resistance (external work
of breathing) was calculated separately for inspiration
and expiration. The work of breathing per volume, i.e.,
the volume-averaged mean pressure, (5,9) was calcu-
lated as WOB, /V,, where WOB,, is the sum of inspi-
ratory and expiratory work of breathing.

All signals were recorded on an FM tape recorder
(Honeywell 101, Honeywell Inc., Denver, CO). Reduction
of data was performed on a computer by programs written
in-house. The sampling frequency was 100 Hz. Each
experiment was divided into 5-min periods in which
parameters related to ventilation were sampled for at least
1 min. Further, a dyspnea score was obtained (except
during rest) and a VC maneuver was performed. Work of
breathing was calculated for at least five breaths per period.
The exercise was divided into four 5-min periods starting
at Minute 5. The results for exercise are averages of these
four periods. Each experimental resistance combination
was performed in duplicate and the results presented are
averages of these two experiments. The order of resistance
level, placement and depth was randomized with the
exception that all combinations in the first set were
completed before the second repetition was started. The
subjects were not informed of the placement and level of
resistance. A total of 100 experiments were performed.

Parameters used to judge acceptability: The criteria
used to decide whether a breathing resistance was accept-
able were the same as employed in an earlier study (5).
They pertain to the risk of hypercapnia and dyspnea as
reflected by end-tidal CO, and dyspnea scores. The reasons
for these two criteria and the levels chosen are elaborated
on in (5). Briefly, for each criterion, neither of two levels
should be exceeded: one for the group mean and one for
the individual subject. For the end-tidal CO, the group
mean should not exceed 55 mmHg (7.3 kPa) and nobody
should maintain levels above 60 mmHg (8.0 kPa). These
levels were chosen to allow the subjects’ to retain their
performance by avoiding CO, narcosis and levels of end-
tidal CO, that are known to be too high (10). As for the
dyspnea scores, the group mean should not exceed 0.5 and
everybody should report a score less than 2. Thus, the
subjects should, despite the dyspnea, be confident about
continuing exercise for at least 5 min more.

Statistical methods: Differences between inspiratory
and expiratory resistances were analyzed with paired ¢
tests. Wilcoxon’s signed rank test was used to determine
differences for dyspnea scores. Statistical significance
was noted at P <0.05.
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RESULTS

Tables 2-5 provide compilations of results for all
parameters, sorted by exercise level and depth. The
values are averages for all subjects and, for Tables 4 and
5, over all exercise periods.

The resistance placement did not cause any changes in
the end-tidal CO, pressure when the subjects were at rest.
However, during exercise (Fig 1) at the shallow depth it
was influenced by the resistance placement (P < 0.01),
the inspiratory resistance producing higher values, on the
average by 1.8 mmHg (0.25 kPa). At the greater depth
the difference did not reach statistical difference (P =
0.07). Subject B maintained CO, levels of 61-62 mmHg
(8.1-8.3 kPa) with the two high resistances at the greater
depth. In the same situation, subject C maintained 59
mmHg (7.9 kPa) while the other subjects’ levels were
considerably lower. It is worth noting that the CO, levels
were sometimes higher, sometimes lower, when the
subject was exposed to the depth-load combination the
second time.

The dyspnea scores were higher with moderate inspira-
tory resistance than with expiratory resistance at the
shallow depth and with the high inspiratory resistance at
the greater depth (Fig. 2). At the great depth and the
moderate inspiratory resistance the dyspnea scores were
only marginally higher (P = 0.07). The inspiratory
resistance caused a subject to quit an experiment because
of overwhelming dyspnea in three instances. In no case
was an experiment terminated because of the expiratory
resistance. One subject quit an experiment after 20 min
with the control resistance at the greater depth.

Neither Vg, V,, Vo, nor f was influenced by the
placement of the resistance. The R was slightly higher
with inspiratory resistance than with expiratory resistance
during resting conditions at the shallow depth.

The MVV (Fig. 3) at the greater depth was reduced by
about 9% when the high resistance was on the inspiratory
side compared to the expiratory side (P = 0.009). The
FEV, », was not changed by the resistance placement.

As could be expected, the VC was not influenced by the
resistance loads. The high inspiratory resistance caused a
greater change in the ERV during exercise at the shallow
depth compared to the expiratory resistance (P =0.01).

Both resistance placements caused changes in the T/T,
during exercise at the shallow depth (P <0.01), Fig. 4. The
inspiratory resistance caused increases while the expiratory
resistance caused decreases. The changes were greater with
the inspiratory resistance. At the greater depth, statistically
significant differences were only seen with the moderate
resistance (P < 0.01). At this depth the data for the high
resistance were not normally distributed and a paired  test
could therefore not be performed. Wilcoxon’s Signed Rank
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A exercise at the shallow depth HR (P =0.02) compared to the expiratory resistance.
(15 fsw, 4.5 msw, 147 kPa, 1.45 atm)
= 9 DISCUSSION
, The goal of imposing the same total resistive load with
260 185  the different resistance placements was achieved since
Essj &  the volume-averaged pressure (work of breathing per
= A 0<0.01 78  volume) was the same. Thus, the changes seen were not
K] 907 § due to the total breathing resistance but to its
S 45 — ’ -6 8  distribution.
% 40_; = o Based on the changes in T/T,,, the strategy used by
g g 54 the subjects to handle the resistive load was to spend a
357 % i greater part of each breath during the loaded phase, e.g.,
30 AN |, RN N i an inspiratory resistance caused an increase in T/T,,.
control  expiratory inspirat expirato . . fot
modecats resistance.  high rasistnce This lowers the mean flow during the loaded phase and,
consequently, the pressure required to overcome the
B exercise at the great depth A
(190 fsw, 57 msw, 690 kPa, 6.8 atm) exercise at the shallow depth
) 9 (15 fsw, 4.5 msw, 147 kPa, 1.45 atm)
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= 1 - 7 v v v
8 50 3 82
&, | o g /
el A 63 & ’ P
2,1 % [ 2 v v
5 40 7 [ € 1 x = x
] 2 5 -
i 2 5
35 2 e
30- IR , ' 2 Nl | \.::?5. = z:
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FIG. 1—End-tidal CO, values plotted vs. the resistance level and |
placement. 4, results from the shallow depth; B, results from the great 31 v ¥ G 4
depth. Each bar represents a subject and the filled circle represents l /
the group mean. / /
/ /
Test did not show a statistical difference. During resting 2 27 / ;
conditions, the moderate inspiratory. resistance caused a 3 /
greater change than the moderate expiratory resistance at & & ¢ p<00t
the great depth (P = 0.04). o= —_— - -
During exercise, the pressures in the mask were e
affected by the placement of the resistance as intended, P
. . - 1l =®» @ e & -
i.e., the pressures were higher on the side that the control  exoiratorv  Insoiratorv  expiratory  inspiratory
resistance was placed. The only statistically significant N R e
change during resting conditions was at the greater depth
where the inspiratory resistance caused greater pressures
than the expiratory resistance. The volume averaged ® median X 75% W maximum

pressure was not influenced by the different resistance
placements.

During exercise at the greater depth the inspiratory
resistance caused a small increase of 4 beats -min ' in the

FIG. 2—Dyspnea scores plotted vs. the resistance level and place-
ment. A, results from the shallow depth: B, results from the great
depth. Three symbols represent the median value, the 75" percentile,
and the maximum values reported.
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A exercise at the shallow depth
(15 fsw, 4.5 msw, 147 kPa, 1.45 atm)
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FIG. 3—T/T, values plotted vs. the resistance level and placement.
A, results from the shallow depth; B, results from the great depth.
Each bar represents a subject and the filled circle represents the group
mean.

resistance. This strategy has been reported in other studies
(3,4) as well. The reduction in ERV that was seen with
the high inspiratory resistance compared to expiratory
resistance at the shallow depth would tend to assist the
inspiration by placing the inspiratory muscles at a
mechanical advantage. This response was not seen at the
great depth probably because of the increased gas density,
which increased the airway resistance which in turn tends
to even out the differences between the externally applied
resistances.

During rest at the great depth the ventilation appears to
have been higher and the end-tidal CO, lower than during
rest at the shallow depth. This confirms previously
reported observations (5,8).
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Differences between inspiratory and expiratory
resistances: Several parameters indicated that
inspiratory breathing resistance causes greater changes
than expiratory breathing resistance. For instance, at the
great depth the MVV was 9% lower with the high
inspiratory resistance than with the high expiratory
resistance. To determine if this was a systematic effect,
the changes in the different parameters were compared.
These parameters are the ones that would reflect
physiologic changes (e.g., dyspnea, end-tidal CO,,
T/T,,, etc.) but not the ones that would be directly
caused by the resistance placement, i.e.,, mouth
pressures. The inspiratory resistance induced higher
values or greater changes from control in 10 out of the
11 statistically significant changes (P < 0.006, one-
sample proportion test).

=5 A rest at the shallow depth
@ (15 fsw, 4.5 msw, 147 kPa, 1.45 atm)
B 200
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(190 fsw, 57 msw, 690 kPa, 6.8 atm)
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% aed 4
inspiratory
high resistance

Maximum voluntary ventilation (L/min BTPS)

moderate resistance
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FIG. 4—Maximum voluntary ventilation values plotted vs. the
resistance level and placement. A, results from the shallow depth; B,
results from the great depth. Each bar represents a subject and the
filled circle represents the group mean.
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Most important was the difference in the dyspnea
scores. At both depths there were statistically significant
changes between inspiratory and expiratory resistances,
the inspiratory resistance inducing the higher dyspnea
scores. Even more telling is the fact that three different
subjects actually had to quit because of overwhelming
dyspnea caused by the inspiratory resistance.

Relatively fewer differences between the expiratory and
inspiratory resistances were seen at the greater depth
compared to the shallow depth. This can be explained by
the fact that at the greater depth the increased gas density
causes greater internal resistance which tends to even out
the difference between external inspiratory and expira-
tory loading.

Other studies have shown less clear changes between
inspiratory and expiratory resistance. In one study (2)
employing moderate exercise the subjects reported that
the “perceived discomfort” and the “perceived limitation
of exercise duration” were the same for inspiratory and
expiratory resistance. In a later study (3) employing about
the same levels of exercise and breathing resistance, the
same investigators found that inspiratory resistance had
predominant effects over expiratory resistance. In the
present study, the high resistance was about twice that
used and the ventilation was about 3 times higher
compared to studies (3) and (2). In one other study (4)
inspiratory and expiratory resistances of the same
magnitude were found to induce the same amount of
dyspnea. In that study the resting subjects were exposed
to a resistance that was about 3 times higher than the high
resistance used in the present study, but the ventilation
was only about 15% of the ventilation obtained in the
present study which employed exercise. The lack of
differences between inspiratory and expiratory resistance
in studies (2) and (4) is likely to have been due to a
combination of low resistance, low ventilation, and a
small number of subjects.

The greater sensitivity to inspiratory resistance could be
due to extrathoracic airway narrowing. This would be due
to the lower pressure inside the airways during
inspiration. The pressure drop would be increased with an
inspiratory resistance and exacerbated by increased gas
density. This notion has support from a study (11) where
theoretical calculations and experimental data are
provided showing that this can occur at depths of 300
msw. The subjects breathed a gas with a density between
5.0 and 5.9 kg - m>. One of the subjects “showed some
evidence of reduction in flow at sea level”. The gas
density in the present study was as high as 8.8 kg - m™
making this phenomenon likely.

Acceptable levels of asymmetrical resistance: One
subject maintained CO, levels that were just above the

acceptability limit with the high resistances at the
greater depth. The dyspnea scores were too high with
both inspi-ratory resistances at both depths. Based on
our criteria this means that both inspiratory resistances
and the high expiratory resistance were unacceptable. A
larger number of subjects would be necessary to draw
any firm conclusions based on the mean dyspnea
scores. The scores for the expiratory resistances were
always below the limits. Thus, an inspiratory resistance,
when acting alone, must be smaller than the resistances
tested in the present study. In other words, a volume-
averaged pressure of 1.5 kPa is too much for an
inspiratory resistance. For the expiratory resistances the
volume-averaged pressure of 2.0 kPa is too much.

In this study all subjects could manage the moderate
expiratory resistance safely. However, this does not
mean that other subjects would be safe with the same
resistances.

In one of the few proposed standards for performance
testing of divers’ breathing apparatus (9) it is stated that
the maximum work of expiration should be less than
“50% of permissible external work”. The physiologic
data obtained in the present study, where the static lung
load was zero and no elastance was imposed, did not
support such a statement since we have found that the
inspiratory resistance should be the smaller.

Other observations: Subject D aborted an experiment
at the greater depth because of severe dyspnea while
exposed only to the control resistance. Perhaps such a
subject is not suited to dive to this great a depth. How-
ever, it is interesting to note that he had no difficulty
when an expiratory resistance was added. The apparent
improvement in tolerance with the expiratory resistance
was not due to a change in the ERV. However, one
might speculate that it relates to the changes in
respiratory duty cycle. The expiratory resistances
increased the time spent during expiration, thereby
lowering the average expiratory flow. A lower
expiratory flow would give a greater margin to the flow
at which dynamic airway collapse would occur. This
subject was the one who had the highest workload and,
consequently, the highest V... With the control load at
the greater depth, his V. was 86% of his MVV. It seems
likely that this high ratio of V; to MVV may induce
some dynamic airway collapse or at least be fatiguing.
With the moderate expiratory resistance the V; was
81% of the MVV and with the high expiratory
resistance it was 79% of the MVV. This improvement
was caused by concomitant decreases in the Vi and
increases in the MVV. The decreases in V, were most
likely due to the imposed resistance. The improvement
in the MVV was not paralleled by changes in the
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FEV, ;% but may perhaps have been due to a lower mean
expiratory flow induced by the expiratory resistance.
Conclusions: The external breathing resistance should
be as small as possible. An inspiratory breathing resis-
tance, of a magnitude likely to apply to divers’ breathing
apparatus, should be the same or smaller than the
expiratory breathing resistance. Unavoidable resistances,
such as those caused by CO, absorbers in closed or semi-
closed circuit breathing gear, should be placed on the
expiratory side. The volume-averaged pressure for inspi-
ratory resistance, when acting alone, should be less than
1.5 kPa. An expiratory resistance, acting alone, should not
induce a volume-averaged pressure higher than 2.0 kPa.
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